LIBERTY PAPER SET

STD. 12 : Chemistry

Full Solution

Time: 3 Hours

ASSIGNTMENT PAPER 11

Part A

1. (C) 2. (C) 3. (C) 4. (B) 5. (A) 6. (C) 7. (B) 8. (C) 9. (A) 10. (C) 11. (D) 12. (B) 13. (A) 14. (D) 15. (A) 16. (A) 17. (D) 18. (D) 19. (A) 20. (A) 21. (A) 22. (D) 23. (A) 24. (B) 25. (D) 26. (D) 27. (C) 28. (A) 29. (D) 30. (C) 31. (A) 32. (A) 33. (A) 34. (A) 35. (B) 36. (B) 37. (C) 38. (D) 39. (B) 40. (C) 41. (D) 42. (B) 43. (D) 44. (D) 45. (D) 46. (B) 47. (B) 48. (C) 49. (A) 50. (A)

Liberty

When a ligand attaches to the metal ion in a manner that forms a ring, then the metal- ligand association is found to be more stable. In other words, we can say that complexes containing chelate rings are more stable than complexes without rings. This is known as the chelate effect.

e.g. :

$$Ni^{2+} + 6NH_3 \rightarrow [Ni(NH_3)_6]^{2+}$$

 $Ni^{2+} + 3en \rightarrow [Ni(en)_3]^{2+}$
More Stable

6.

(5) Homoleptic and Heteroleptic complexes :

"Complexes in which a metal is bound to only one kind of donor groups are known as homoleptic." e.g. : [Co(NH₃)₆]³⁺

"Complexes in which a metal is bound to more than one kind of donor groups are known as heteroleptic."

e.g. : $[Co(NH_3)_4 Cl_2]^+$

7.

Toluene to benzyl alcohol :

8.

- Alkyl halides react with sodium in dry ether to give hydrocarbons containing double the number of carbon atoms present in the halide.
- ➡ This reaction is known as Wurtz reaction.

$$2RX + 2Na \xrightarrow{dry} R - R + 2NaX$$

$$2CH_{3} - Br + 2Na \xrightarrow{dry} CH_{3} - CH_{3} + 2NaBr$$
Bromomethane

$$CH_{3} - CH_{2} - Br + 2Na \xrightarrow{dry} CH_{3} - CH_{2} - CH_{2} - CH_{3} + 2NaBr$$
Bromoethane
$$n-butane$$

$$2CH_{3} - CH - CI + 2Na \xrightarrow{dry} CH_{3} - CH - CH - CH_{3} + 2NacI$$

iso propylchloride 2, 3-dimethylbutune

Limitation :

OH

(1) This method is suitable to produce an alkane only with even number of carbon.

(2) If alkyl halide is tertiary, the alkene is major product.

9.

Reaction of phenol with zinc dust : Phenol is converted to benzene on heating with zinc dust.

+
$$Zn \rightarrow$$
 + ZnO

 Oxidation : Oxidation of phenol with chromic acid produces a conjugated diketone known as benzoquinone. In the presence of air, phenols are slowly oxidised to dark coloured mixtures containing quinones.

Nitriles are reduced to corresponding imine with stannous chloride in the presence of hydrochloric acid, which on hydrolysis give corresponding aldehyde.

$$RCN + SnCl_2 + HCl \longrightarrow RCH = NH \xrightarrow{H_3O^+} RCHO$$

This reaction is called Stephen reaction.

11.

- Complete hydrolysis of DNA (or RNA) yields a pentose sugar, phosphoric acid and nitrogen containing hetero cyclic compounds (called bases).
- In DNA molecules the sugar moiety is β-D-2 deoxy-ribose where as in RNA molecule it is β-D-ribose.

DNA contains four bases viz, adenine (A), guanine (G), cytosine (C) and thymine (T). RNA also contains four bases, the first three bases are same as in DNA but the fourth one is uracil (U).

12.

- Information regarding the sequence of nucleotides in the chain of a nucleic acid is called its primary structure. Nucleic acids have a secondary structure too.
- James Watson and Francis Crick gave a double strand helix structure for DNA. Two nucleic acid chains are wound about each other and held together by hydrogen bonds are formed between specific pairs of bases. Adenine forms hydrogen bonds with thymine where as cytosine forms hydrogen bonds with guanine.

Section **B**

- Anode H_2O + Cathode Aqueous electrolyte $H_2 \rightarrow$ \leftarrow O_2
- ➡ In the cell, hydrogen and oxygen are bubbled through porous carbon electrodes into concentrated aqueous sodium hydroxide solution.
- Catalysts like finely divided platinum or palladium metal are incorporated into the electrodes for increasing the rate of electrode reactions.
- ➡ The electrode reactions are given below :

Cathode : $O_2(g) + 2H_2O(1) + 4e^- \rightarrow 4OH^-(aq)$

Anode : $2H_2(g) + 4OH^-(aq) \rightarrow 4H_2O(1) + 4e^-$

Net reactions : $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$

(i) Write differential rate equation:

Rate = $k [A][B]^2$

(ii) How is the rate affected on increasing the concentration of B three times ?

Initial rate $r_1 = k [A][B]^2$

When concentration of B is increased to three times,

Rate $r_2 = k [A][3B]^2 = 9k [A][B]^2 = 9r_1$

∴ rate becomes nine times.

(iii) How is the rate affected when the concentration of both A and B are doubled?

Initial rate $r_1 = k [A][B]^2$

When concentration of both A and B is increased to two times,

Rate
$$r_2 = k[2A][2B]^2 = 8k [A][B]^2 = 8r_1$$

∴ rate becomes eight times.

16.

- Dichromates are generally prepared from chromate, which in turn are obtained by the fusion of chromite ore (FeCr₂O₄) with sodium or potassium carbonate in free access of air.
- The reaction with sodium carbonate occurs as follows
 - 4 FeCr₂O₄ + 8 Na₂CO₃ + 7 O₂ \rightarrow 8 Na₂CrO₄ + 2 Fe₂O₃ + 8 CO₂
- The yellow solution of sodium chromate is filtered and acidified with sulphuric acid to give a solution from which orange sodium dichromate, Na2Cr2O7. 2H2O can be crystallised.

 $2Na_2CrO_4 + 2 H^+ \rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O_1$

Sodium dichromate is more soluble than potassium dichromate. The latter is therefore, prepared by treating the solution of sodium dichromate with potassium chloride.

 $Na_2Cr_2O_7 + 2 KCl \rightarrow K_2Cr_2O_7 + 2 NaCl$

- Orange crystals of potassium dichromate crystallise out.
- The chromates and dichromates are interconvertible in aqueous solution depending upon pH of the solution.

$$2 \operatorname{CrO}_{4}^{2-} + 2\mathrm{H}^{+} \rightarrow \operatorname{Cr}_{2}\mathrm{O}_{7}^{2-} + \mathrm{H}_{2}\mathrm{O}$$
$$\operatorname{Cr}_{2}\mathrm{O}_{7}^{2-} + 2 \operatorname{OH}^{-} \rightarrow 2 \operatorname{CrO}_{4}^{2-} + \mathrm{H}_{2}\mathrm{O}$$

17.

There are two primary alkyl halides having the formula, $C_{A}H_{0}Br$. They are *n* - bulyl bromide and isobutyl bromide.

- Therefore, compound (a) is either n-butyl bromide or isobutyl bromide.
 - Now, compound (a) reacts with Na metal to give compound (b) of molecular formula, C_8H_{18} which is different from the compound formed when n-butyl bromide reacts with Na metal. Hence, compound (a) must be isobutyl bromide.
 - 2Na/dry ether CH₃CH₂CH₂CH₂CH₂CH₂CH₂CH₃ + 2NaBr 2CH,CH,CH,CH,Br n-Octane

n-Butly bromide

➡ It is given that compound (a) reacts with alcoholic KOH to give compound (b). Hence, compound (b) is 2-Methylpropane.

$$\begin{array}{ccc} CH_{3} - CH - CH_{2} - Br & \overrightarrow{KOH(acl)/\Delta} & CH_{3} - C = CH_{2} + H Br \\ & & & | \\ CH_{3} & & CH_{3} \\ \end{array}$$
Isobutyl bromide 2-Methylpropene
(a) (b)

Also, compound (b) reacts with HBr to give compound (c) which is an isomer of (a).

Hence, compound (c) is 2-bromo-2-methylpropane.

$$\begin{array}{ccc} CH_{3} - CH = CH_{2} & \xrightarrow{HBr} & \stackrel{Br}{|} \\ CH_{3} - CH_{3} & CH_{3} - C - CH_{3} \\ CH_{3} & CH_{3} \end{array}$$
2-Methylpropene
(b)
2-Bromo-2-Methylpropane
(c)
(as isomer of (a))

18.

Halogenation : On treating phenol with bromine, different reaction products are formed under different experimental conditions.
 (a) When the reaction is carried out in solvents of low polarity such as CHCl₃ or CS₂ and at low temperature, monobromophenols are formed.

- ➡ The usual halogenation of benzene takes place in the presence of a Lewis acid, such as FeBr₃, which polarises the halogen molecule. In case of phenol, the polarization of bromine molecule takes place even in the absence of Lewis acid. It is due to the highly activating effect of –OH group attached to the benzene ring.
 - (b) When phenol is treated with bromine water, 2, 4, 6-tribromophenol is formed as white precipitate.

19.

 Aldol condensation : "Aldehydes and ketones having at least one α-hydrogen undergo a reaction in the presence of dilute alkali as catalyst to form β-hydroxy aldehydes (aldol) or β-hydroxy ketones (ketol), respectively. This is known as Aldol reaction."

(ii) $NO_2 \xrightarrow{Sn+HCl} NH_2$

Reduction with iron scrap and hydrochloric acid is preferred because FeCl₂ formed gets hydrolysed to release hydrochloric acid during the reaction.

 $Fe + 2HCl \rightarrow H_2 + FeCl_2$

 $FeCl_2 + H_2O \rightarrow Fe(OH)_2 + 2HCl$

Thus, only a small amount of hydrochloric acid is required to initiate the reaction.

Section C

\triangleright Write the answer of the following questions : (Each carries 4 Mark)

22.

```
liquid = A
                                               liquid = B
          p_{\rm A} = (?)
          p_{\text{Total}} = 475 \text{ torr}
         Moles of liquid-A (n_{\rm A}) = \frac{W_{\rm A}}{M_{\rm A}} = \frac{100}{140} = 0.714
        Moles of liquid–B (n_{\rm B}) = \frac{W_{\rm B}}{M_{\rm B}} = \frac{1000}{180} = 5.55
                                                               0.714
                                                                                   iberty
         Mole-fraction of liquid–A (x_A) = \overline{0.714 + 5.55}
                = 0.114
         Mole-fraction of liquid–B (x_{\rm B}) = 1 – 0.114
                = 0.886
                p_{\text{Total}} = p_{\text{A}}^{\text{o}} \cdot x_{\text{A}} + p_{\text{B}}^{\text{o}} \cdot x_{\text{B}}
                475 = p_{\rm A}^{\rm o}. (0.114) + (500)(0.886)
                \therefore 475 = p_{A}^{\circ} (0.114) + 443
                \therefore 475 - 443 = p_A^\circ (0.114)
                \therefore 32 = p_{A}^{o} . (0.114)
                P_{\rm A}^{\rm o} = 280.7 \, {\rm torr}
          Vapour pressure of pure liquid A is 280.7 torr
          Vapour pressure of liq-A in solution
                p_A = p_A^o \cdot x_A
                =(280.7).(0.114)
                p_A = 32 \text{ torr}
23.
          Cd(s) + 2Ni(OH)_3(s) \rightarrow CdO(s) + 2Ni(OH)_2(s) + H_2O(I)
          (a) Dry cell
                 Anode : Zn(s) \rightarrow Zn^{+2} + 2e^{-1}
                 Cathode : MnO_2 + NH_4^+ + e^- \rightarrow MnO(OH) + NH_3
          (b) Lead storage battery
                 Anode : Pb_{(s)} + \frac{SO_{4(aq)}^{-2}}{PbSO_{4(s)}} \rightarrow PbSO_{4(s)} + 2e^{-1}
                 Cathode : \frac{PbO_{2(s)}}{PbO_{2(s)}} + \frac{SO_{4(aq)}^{-2}}{PbO_{4(aq)}} + \frac{4H_{(aq)}^{+}}{2e^{-}} \rightarrow \frac{2PbSO4_{(s)}}{PbO_{4(s)}} + 2H_{2}O_{4(s)}
```

- Decomposition reaction of azoisopropane, $(CH_3)_2CHN = NCH(CH_3)_2 \rightarrow C_6H_{14}(g) + N_2(g)$ Pressure at time t = 0 35 mm Hg 0 0 Change in pressure - x +x+xPressure after t = 360 s35 – x +x+x \therefore Total pressure after 360 s = 35 - x + x + x = 54 mm Hg $\therefore x = 19$ \therefore Pressure after t = 360 s 35 - 19 mm = 16 mm Hg Calculation of rate constant at 360 s : Initial pressure $[R]_0 = p_i = 35 \text{ mm Hg}$ Pressure at time t $[R]_t = p_t = 16 \text{ mm Hg}$ For first order reaction, $k = \frac{2.303}{t} \log \frac{p_i}{p_t}$ p_i iberty $=\frac{2.303}{360}\log \frac{35}{16}$ 2.303 = 360 log 2.1875 2.303 = 360 \times 0.3399 \therefore k = 2.1747 × 10⁻³ sec⁻¹ Calculation of k at t = 720 s: Total pressure at t = 720 s, Total pressure at equilibrium = 35 - x + x + x= 63 mm Hg $\therefore x = 28$ Initial pressure at time t = 0 s, $[R]_0 = p_i = 35$ mm Hg Pressure at time t = 720 s, $[R]_t = p_t = 35 - 28$ = 7 mm HgFor first order reaction, $k = \frac{2.303}{t} \log \frac{p_i}{p_t}$ $=\frac{2.303}{720}\log\frac{35}{7}$ 2.303 = 720 log 5 2.303 = 720 × 0.6990 \therefore k = 2.21 × 10⁻³ sec⁻¹ 25.
- → In $[Co(NH_3)_6]^{3+}$ ion oxidation number of cobalt is +3.
- ► Electronic configuration of cobalt in ground state.

	$_{27}$ Co : [Ar] $3d^7$ $4s^2$ $4p$
	$\uparrow \downarrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$
-	Electronic configuration of cobalt in +3 oxidation state.
	$_{27}$ Co ⁺³ : [Ar] 3d ⁶ 4s 4p
⇔	NH_3 is strong ligand so electrons get paired in d-orbital and d^2sp^3 hybridisation occurs.
	$Co^{+3} \cdot [\Lambda r] \cdot 3d^6$
	Six $d^2 en^3$ hybrid orbitals
	$[Co(NH_{-})_{-}]^{+3}$: 3d ⁶
	(inner orbital internet intern
	or low spin $1 \downarrow \uparrow \downarrow $
	complex
	Six pairs of electrons
₩	Six pairs of electrons, one from each NH ₂ molecule, occupy the six hybrid orbitals.
L	Thus, the complex has octahedral geometry and is diamagnetic because of the absence of unpaired electron.
₩	In the formation of this complex, since the inner d orbital (3d) is used in hybridization, the complex, $[Co(NH_3)_6]^{3+}$ is called an
	inner orbital or low spin or spin paired complex.
₩	In $[Ni(NH_3)_6]^{2+}$ ion oxidation state of Ni is +2.
₩	Electronic configuration of Ni ²⁺ ion.
	${}_{28}\mathrm{Ni}^{2+}: [\mathrm{Ar}] 3\mathrm{d} \qquad 4\mathrm{s} \qquad 4\mathrm{p}$
₩	If NH causes the pairing then 3d orbital is not empty. Thus, it cannot undergo $d^2 \sin^3$ hybridization Therefore, it undergoes $\sin^3 d^2$
	hybridization.
	$[Ni(NH_{.})_{.}]^{2+}$
	3d sp ³ d ² 4d
	Six pair of electrons
	from six NH ₃ molecules
₩	Hence, it forms an outer orbital complex.
26.	
₩	Propoxypropane from propan-1-ol can be synthesised by two different methods :
	1. By Williamson synthesis:
	$3 \text{ CH}_3 - \text{CH}_2 - \text{CH}_2 - \text{OH} + \text{PBr}_3 \rightarrow 3 \text{ CH}_3 - \text{CH}_2 - \text{CH}_2 - \text{Br} + \text{H}_3\text{PO}_3$
	Propan-1-ol 1-Bromopropane
	$CH_3 - CH_2 - CH_2 - OH + Na \rightarrow CH_3 - CH_2 - CH_2 - \overline{O} \stackrel{T}{Na} + \frac{1}{2} H_2$
	Propan-1-ol Sodium propoxide